摘要:S11639线阵传感器常被用于需要紫外测量的微型光谱仪中。但当S11639曝光量较大时,会出现光谱响应的非线性,从而影响微型光谱仪的动态范围,因此必须进行非线性校正。利用卤钨灯与氘灯测量微型光谱仪的光电响应特性曲线,找出S11639的曝光量与A/D转换输出的线性部分,对数据进行直线拟合,获得S11639在线性范围内的系数。在此基础上,外推得到其在非线性范围内的理论值,求出理论值与实际测量值的差异,利用最小二乘法进行多项式拟合,实现S11639线阵传感器的非线性校正。同时,对比实验结果,分析实验数据的误差成因,为更好地利用基于S11639 微型光谱仪的全动态范围光电检测提供实验依据。
关键词:微型光谱仪;光谱响应;非线性校正;动态范围;多项式拟合
1 引 言
微型光谱仪的检测原理是利用光栅散射将复合光分解为不同波长的光,照射到CCD或者CMOS光电传感器表面,从而将光信号转换为电信号。微型光谱仪广泛应用于环境监测、食品品质、LED光谱分析的在线测量[1-5],国内外常用的微型光谱仪的线阵传感器基本上是东芝公司的TCD1304DG和索尼公司的IlX511B或者它们的改进型。由于透明的多晶硅电极能强烈吸收低于400 nm的紫外线,使紫外光线无法穿透线阵传感器表面进入其内部, 从而无法被探测到[6,7]。S11639是滨松公司推出的一款高灵敏度CMOS线阵传感器,具有在紫外波段的高灵敏度特性,单电源5 V供电。2015年本课题组将S11639应用于微型光谱仪[8],2017年3月上海慕尼黑光电展,微型光谱仪研制生产的标杆企业——美国海洋公司在其推出的新品FX系列微型光谱仪中也用到了S11639。S11639适合于紫外波段的入门级光谱仪,未来可以取代原来入门级微型光谱仪中的紫外增敏CCD。
理想情况下,一般认为S11639的每个像元,在整个动态范围内,光的入射量与光生电荷具有良好的线性,也就是光谱灵敏度R是一个常数。实际上,从 CMOS结构看, CMOS计数非线性产生主要源于成像区内像素势阱间的电荷分享和扩散, 电荷间的这种相互作用随着光的曝光量增加而增强从而导致电荷溢出等现象的发生, 因此计数值增大导致线性度变差。测量CCD或者CMOS器件的光电响应特性的方法主要有尖劈法、双缝衍射法、小孔衍射法,其光源主要是激光,也有用LED作光源测量器件[9-12]。上述方法中,激光与LED被认为是单色光,测量的是此波长处的光强或积分时间的改变对器件光电响应的影响。S11639应用于微型光谱仪,微型光谱仪本身就有一套分光系统,卤钨灯与氘灯可以互补发出从紫外到近红外 (215 nm~2500 nm)范围的光谱,与此光源配合,可以测得微型光谱仪中S11639的全光谱的光电特性。通过改变积分时间改变S11639的曝光量,得到模数(A/D)转换的值。对数据进行直线拟合,从而获得S11639在线性范围内的系数,在此基础上,外推得到在非线性范围内的理论值,求出理论值与实际测量值的差异,利用最小二乘法进行多项式拟合,实现S11639线阵传感器的非线性校正,扩大了基于S11639光谱仪的测 量范围。
图1 不同积分时间的光谱响应.
Fig. 1 Spectral response in different integration time.
图2 测试示意图.
Fig. 2 Schematic of test.
2 实验研究的理论依据
2.1 非线性校正的理论基础
光源的光通过光纤被导入光谱仪,经过非对称的C-T光学系统,将复合光分解成单色光照射在S11639的表面,其信号通过线性放大与A/D转换,输出的转换值就是曝光量的函数。理想情况下, 入射光信号和最终数字输出之间的转移函数应该随着入射光信号增加而呈线性变化:
式中:K为线性斜率,是一常数;表示稳定光源中在某个波长的光功率;为CMOS对波长光响应量子效率;t为光谱仪的积分时间;B为读出噪声计数,在某一固定状态设置下,它也为一常量;表示S11639的输出计数,单位为A/D转换单位(ADUS)。图1就是光谱仪在不同积分时间下(积分时间分别为 100 ms,200 ms),对美国海洋公司卤钨灯的光谱响应。S11639的信号输出被线性放大,用16位A/D转换电路采集,通过USB口送到上位机中。
根据黑体辐射理论,发光体的并不是一条直线,在不同波长位置,相差很大。同样,S11639对波长光响应量子效率为,也不是一条直线,也有一根光谱的响应曲线。但是,如果能够找到与乘积相同的波长位置,使得在不同波长位置两者相同,A/D输出的值就相同。然后再改变积分时间t,不同波长位置的两者对积分时间的变化如果是重合的(不考虑CMOS本身的像素差异),就验证了式(1)的正确性,微型光谱仪的非线性校正的理论基础就源于此。
2.2 S11639的光电响应特性
为了防止背景光干扰,实验在暗室中进行。测试的示意图如图2所示。
光源为美国海洋公司的光源,微型光谱仪是杭州博源光电科技有限公司的BIM6602(光谱仪只进行了波长标定),在光学平台上固定光纤头,调整光谱仪与光纤头的距离,积分时间为500 ms,使得微型光谱仪在两个对应最高波长附近处恰好接近饱和,接近16位A/D转换的最大值65535。逐步减少积分时间测到光谱仪的最小积分时间。BIM6602的最小积分时间是 0.5 ms,并且特意选择比较远的四个点(紫外与近红外各2点),500 ms测量起始值之间的误差小于1%,逐步减少积分时间,测量结果如表1所示。四个波长位置数据基本上是重合的。
以759.842 nm为例,对应的积分时间与A/D转换值如图3所示,积分时间越长,S11639的曝光量越大,越接近饱和,非线性越明显。
图3 S11639的积分时间与A/D转换值关系图.
Fig. 3 A/D converter data vs. integral time of S11639.
表1 S11639的A/D转换值.
Table 1 A/D converter data of S11639.
2.3 实验数据处理与改进
从2.2节分析可知,如果光谱仪的积分时间增加是线性的,光谱仪的A/D转换值应该是线性的。由于S11639在接近饱和时的非线性,光谱仪的输出表现为非线性,在整个动态范围内,S11639的饱和非线性限制了光谱仪的测量精度范围。为此,可以利用最小二乘法进行数据拟合处理,使得光谱仪在整个动态范围内可以得到良好的线性。拟合0.5 ms~350 ms的直线,其中:
256.690 nm的拟合直线为
263.551 nm的拟合直线为
(3)
759.842 nm的拟合直线为
807.5 nm的拟合直线为
(5)
用759.842 nm的已拟合直线的值作为理论值,计算与实际的测量值之间的误差,以理论值作为真值计算百分误差,结果见表2。
表2 759.842 nm处A/D的理论值与实际差值.
Table 2 A/D differences between theoretical value and actual value at 759.842 nm.
通过表2计算可知,在接近S11639的饱和位置,该款光谱仪的A/D转换值在47000以上,开始出现非线性,越靠近65535点,饱和越明显,最大误差可能达到7.61%。如果用来测量LED的光强特性就会出现误差,影响光谱仪的动态范围。
假定整个光谱仪的测量范围,基线是平直的,即B是一个与波长无关的常数,同时K为线性斜率,也是一与波长无关的常数, 这样就可以对光谱仪测得的曝光量进行修正。做出差值与A/D转换值的函数关系图,利用最小二乘法算出校准曲线,得到曝光量与差值的关系。利用多项式拟合,尝试拟合曲线,需要6次以上拟合才能使R2的值大于98%。拟合公式见式(6),式中x表示实际测量值,y是修正值,将实际测量值与修正值相加,就是修正后的真正值,表示光谱仪的曝光量。
将校准以后式(6)推广应用到其他光谱线,计算256.690 nm光谱线,先用式(2)计算理论值,用拟合式(6)计算修正值,与实际值相加,推出接近饱和时的值,以式(2)算出的值为真值计算误差,去掉超过65535的点,可以看出其误差在2%左右,如表3。
表3 256.690 nm处A/D的理论值与实际差值.
Table 3 A/D differences between theoretical value and actual value at 256.690 nm.
3 实验结果与误差分析
S11639饱和的主要原因是电荷势阱的深度有限,不能无限制地容纳内光电效应所产生的电荷。随着曝光量增加内光电效应逐渐明显,为了防止像元饱和后过多的电荷溢出到相邻像元中,目前 S11639采用垂直溢漏技术,其光电响应可用一个 NPN 型耗尽基底的晶体管模型来分析[13-17],N层相当于发射极,P层相当于基极和N型基底相当于集电极,在基底电压不变的时候,击穿电流IPT是晶体管 N层电势的函数:
式中:,取决于基底电压工艺参数,为非理想性因数,VN表示晶体管N层电势。VN的变化为
, (8)
式中:Iλ是总电流,CPN是晶体管等效电容。当VN很小时,击穿电流IPT几乎为零。由式(8)可以推出:
T可以看成是积分时间,由式(9)可知S11639的输出前一部分与曝光量成线性关系,由式(7)可以推出后一部分与曝光量成一个对数关系,将其分别称之为线性区和非线性区。
在短积分时间,理论值与实际测量值也偏差超过2%,甚至超过10%,这是由于:1) 待测系统的暗噪声误差; 2) 在短时曝光中, 快门的响应时间也会影响进入CMOS光子数的相对偏差值, 从而增加计数误差, 影响非线性度;3) 受到加工工艺的限制,每个像素的材料、面积大小各不相同, 导致像元本身的响应不一致,即CMOS的PRNU参数误差,尽管起始值曝光量可能一样。
4 结 论
通过本文的工作可以看出,光谱仪在进行强度测量过程中,为保证光谱仪测量±2%的精度要求,如果需要光谱仪的全动态范围应用时,不得不考虑光电传感器的非线性。光谱仪曝光量的最佳范围:起始值为满量程的5%;终了值为满量程的80%(未线性校正),通过非线性校正,可以延伸到100%。校正后的光谱仪大大拓展了光谱仪的上限动态范围,特别对LED的辐射度测量与色度测量有比较好的应用价值,为更好地利用基于S11639的光谱仪的全动态范围光电检测提供了实验依据。