摘要:针对主动配电系统的分布式电源与网络结构协同规划过程中难以同时考虑它们在运行环节交互作用的问题,提出了一种考虑多主体利益均衡及规划运行交替优化的数学模型和求解算法。首先,建立了分别以分布式电源和配电网各自成本效益最优为目标并内嵌需求响应与运行策略的3 层优化框架及数学模型;其次,提出了基于拓扑等效原则的网络结构简化方法,并结合网架生成过程中拓扑结构变化特征的深入分析,提出了基于破圈法的单联络网络快速生成方法,制定了与之相结合的粒子群优化算法的编/解码方案;再次,基于网供负荷特性和用户需求响应意愿,提出了有源配电网动态分时电价优化方法及运行策略,并建立了内嵌精细化运行的源网协同规划求解流程;最后,通过算例验证了所述方法的合理性和有效性。
关键词:配电网规划;分布式电源;需求响应;3 层协调优化;破圈法
0 引言
分布式电源(distributed generator,DG)接入对配电网的架构和格局产生了极大的影响[1]。由于DG 出力与负荷在时序上存在差异性,最大网供负荷时刻将随DG 投建情况变化,针对负荷断面的规划方法将无法适用,在规划时还需深入研究运行环节的影响。
目前,已有许多文献对 DG 规划[2-3]和网架规划[4-5]展开了研究。但这些文献在源、网规划中将另一对象的预建设方案作为边界条件,求解结果将随边界条件变化,难以得到最优的源网规划方案。为此,文献[6-7]考虑了源、荷的不确定性,结合配电网运行状态,提出源网协同规划方法;文献[8-9]在运行中考虑了需求响应(demand response,DR),对线路、DG 和参与DR 的负荷容量进行整体优化。文献[10-11]考虑了DG 的不确定性,从经济和环保的角度提出了源网荷协调规划模型。以上文献都以源、网整体效益最优为目标进行求解,但在实际配电网规划中,源、网的投资主体往往并不相同,在不同的利益诉求下整体效益最优的方案是难以实现的。为了考虑多主体间的博弈关系,文献[12]提出了基于DG 投建容量的全成本电价机制,以配电公司和用户的利益最优建立了网架与DG 的双层优化模型,但未考虑用户在电价方案下的响应行为。文献[13]分别基于配电公司、DG 运营商和用户的效益最优建立了网、源、荷3 层协同优化模型;文献[14]从用户角度提出了光储运行策略,继而提出配电网与光储协同规划方法。然而以上文献未考虑配电公司在运行环节的主动调度,不能全面地描述各主体的互动关系。
另一方面,因配电网具有复杂的拓扑结构,传统智能算法在网架求解中难以避免不可行解,寻优效率较低。为此,文献[15]对可选线路的决策顺序进行编码,提出了顺序交叉的遗传策略;文献[16]提出了替换基本树中的线路得到新生成树的寻优方法;文献[17]通过交换父体中任意两节点间的连接线路保证子代的辐射性;文献[18]提出了基于避圈法的单联络网络生成方法,但未考虑馈线负载率约束。
针对以上问题,本文基于配电公司及用户在规划、运行环节各项决策间交互关系的深入分析,构建了内嵌需求响应与运行优化的源网协调规划模型,充分考虑了各主体在规划、运行环节中各项决策的可优化空间;其次,针对网架规划模型,基于单联络网络的拓扑分析,提出基于破圈法的单联络网架生成方法及相应的粒子群编/解码方法,以此提高了算法的寻优效率;再次,建立用户的DR 模型,结合配电网网供负荷特性提出动态分时电价优化方法及运行策略,并构建内嵌精细化运行的源网协同规划整体求解流程;最后,通过实际算例分析,验证了本文方法的有效性。
1 主动配电网规划运行3 层规划框架
在主动配电网中,用户和配电公司将同时参与规划、运行环节的决策。在规划环节中,配电公司决策网架结构和DG 接入节点,用户决策DG 投建容量;在运行环节中,配电公司对电价进行调控,用户决定负荷响应情况。其中,用户投建DG 将降低配电网的网供负荷峰值,影响网架规划方案。配电公司制定的电价能够引导用户的响应行为[19],用户响应结果将会改变负荷时序特性,影响DG 建设的收益和配电网的运行成本,改变DG 和网架规划结果。配电公司和用户在各环节的决策相互影响,因此,在规划、运行的任一环节中均必须结合其他环节进行协同优化。
为此,本文建立了主动配电网源、网规划和运行调度的3 层优化模型:第1 层以配电公司收益最优为目标,对网架建设方案和DG 接入位置进行优化;第2 层以用户利益最优为目标,优化DG 建设容量;第3 层基于规划区域净负荷时序特性,以配电公司的运行费用最低为目标,制定峰平谷时段的划分方案,同时用户根据电价进行需求响应。3 层规划模型间的交互关系如图1 所示。
图1 主动配电网规划运行3 层协同规划框架
Fig.1 Tri-level coordinated planning framework of planning and operation of active distribution network
2 主动配电网3层协同规划模型
2.1 配电网网架规划模型
2.1.1 目标函数
配电公司的整体效益主要包括线路建设费用、运维费用和运营费用。目标函数可表示为:
式中:Cinv为配电网扩建费用的等年值,包括新建线路和联络线路;Cmain为配电网的运维费用;Ctrans为配电公司与用户的交易收益,包括向用户售电的收入和从用户投建的DG 处购电的支出;Cup为配电公司从上级电网购电所需的费用。
各部分计算如下。
1)配电网建设费用等年值
式中:d 为贴现 率;m 为线路的 使用年限;i 和 j 为配电网节点;xij为0-1 变量,表示节点i 和j 间的线路是否投建;Lij为线路ij 的长度;Cline为单位长度线路的建设费用。
2)配电网运维费用
式中:μ 为运维费用比例。
3)与用户交易收益
式中:S 为场景数;Nnode为节点数;Csold,t为 s 场景 t 时刻的售电电价;CDG为 DG 上网电价;G 为 DG 的接入位置集合,由配电公司根据网架规划方案下各馈线可消纳 DG 的能力 决定;PDG,i,t,s和 Pload,i,t,s分 别为 s 场景t 时刻节点i 处的DG 出力和负荷大小。
4)配电网从上级电网购电费用
式中:cup为向上级电网购电的单位费用;Psup,t为 t 时刻配电网的网供负荷。
2.1.2 约束条件
1)网络连通性与开环运行约束:配电网必须对所有负荷点供电,避免出现孤岛和成环的现象。
2)联络路径约束:每条馈线均能通过唯一的联络线路与其他馈线进行站间联络[14]。
2.2 DG规划模型
对于用户投建的DG,主要采用“自发自用,余电上网”的交易模式[14,20]。因此,用户投建的 DG 的收益主要包括节约的电费支出和售电收入两部分。
用户的收益最大化目标函数如式(6)所示。
式 中 :K 为 DG 类 型 集 合 ;CDG,k 为 k 类 DG 单 位 容 量建设费用 ;ωi,k 为节点 i 处 k 类 DG 建 设容量;γ 为维护费用比例。
用户投建的DG 容量约束为:
式中:ωk,min和 ωk,max分别为考虑空间等相关条件允许投建k 类DG 的最小容量和最大容量。
2.3 配电网运行调度优化模型
配电网的运行调度策略是从配电公司利益角度出发,以运行收益最大化为目标,优化配电网的分时电价,引导用户的DR 行为。同时,用户将根据配电网的电价变化调整负荷响应结果,配电网结合用户响应后的网供负荷及电价方案计算运行效益,对电价方案进行优选。目标函数可表示为:
配电网的运行调度模型需要满足以下约束。
1)负荷量的转移约束
式 中 :Pdec,i,t和 Pmov,i,t分 别 为 t 时 刻 节 点 i 的 中 断 负 荷量和平移负荷量分别为 t 时刻节点 i的最大可中断负荷量和最大可平移负荷量。
2)DG 出力约束
式中:PDG,i和 QDG,i分别为节点 i 的 DG 的有功和无功出力;PDG,min和 PDG,max分别为 DG 有功出力的最小值和最大值;QDG,min和 QDG,max分别为 DG 无功出力的最小值和最大值。
3)变电站容量约束
式中:Si和Si,max分别为变电站i 实际所带负荷量和最大额定容量。
4)功率平衡约束:系统的安全运行要求配电网时时处于功率平衡状态。
5)节点电压约束:配电网各节点电压偏移量不得超过[-7%,+7%]。
6)馈线负载率约束
式中:SL,i和 SL,max分别为馈线 i 实际所带负荷量和额定容量。
3 基于破圈法的网架优化方法
在配电网规划中,每条待选线路都存在建设与不建设两种状态,因此传统算法常采用0/1 编码进行表示。这一编码方式虽简单易实现,但其解空间将随待选线路数量增多呈指数形式扩大,而在解空间中仅有少数方案能够满足特定接线模式要求[21-22]。基于对配电网拓扑结构的分析,现有研究提出了基于避圈法等原理的求解方法[18],但未考虑馈线负载率约束。配电网规划方案的经济性及安全性要求馈线的负载率需在合理范围之内,因此现有方法在寻优过程中仍将存在大量不符合馈线负载率约束的解,造成算法寻优效率较低。为此,提出一种基于破圈法的3 阶段单联络网络快速生成方法,包括网络简化、基于简化网络的拓扑方案生成和基于简化拓扑方案的实际网架生成3 个步骤。
3.1 基于拓扑等效原则的复杂配电网简化方法
面对复杂的实际配电网架构,同时考虑单联络接线模式拓扑结构约束和馈线负载率约束求解难度较大。为此,首先对配电网网络结构进行简化。通过去除无效支路、合并等效支路,可得到与原始配电网拓扑结构相等效的简化网络[16]。在此基础上,进一步去除已有线路,合并两端端点,依此得到的简化网络中每一条边li均可等效为原始配电网中的若干条待选线路集合Li。因此,每一个简化网络的网架规划方案也将对应于实际配电网的若干规划方案,通过筛选可以减少寻优过程中不满足负载率约束方案的产生。
3.2 基于破圈法的单联络拓扑结构快速生成方法
由辐射网络拓扑特征可知,若将馈线端点视为内部相连的点,生成辐射网络所需的破圈操作次数恒等于网络自然网孔数量。在破圈操作中,去除的线路若属于2 个网孔,这2 个网孔消失的同时将生成新的网孔[23]。新的网孔线路集合Qj'为:
式中:Qi和Qj分别为去除线路所在的2 个网孔线路集合。
与辐射状网络相比,单联络网络中存在k 条连接2 条不同馈线形成的特殊回路。 其中k=为上取整函数,Nfeeder 为线路馈线数量。因此,生成单联络拓扑结构方案需要在网络的破圈操作中保留k 条连接2 条不同馈线且互不相交的特殊回路。具体步骤如下。
总之,课堂提问包含着许多玄机,它既要讲究科学性,又要讲究艺术性,教师要潜心研究,不断探索,注意提问的多样性、艺术性,把握提问的时机,给学生留有积极思维的空间和时间,实现师生互动,生生互动,让课堂变得生动活泼,就能收到预期的效果。
步骤2:在一类圈集i 中随机去除一条线路并更新剩余网孔线路集合及不同馈线联络线集合。
步骤3:检验网络中是否存在k 条互不相交的转供线路,如不符合则放弃该次破圈操作,返回步骤2,反之则进入步骤4。
步骤4:判断网络中是否存在仅含单馈线端点的网孔,若是,令i=i+1,重复步骤2,反之则进入下一步。
步骤5:选择网络中的k 个互不相交的二类圈作为转供路径,对其他的二类圈逐一进行破圈操作。
步骤6:确定每条转供路径中的联络线路。
3.3 基于简化网络方案的实际网架生成方法
采用3.2 节提出的单联络拓扑结构生成方法,将得到的简化网络中去除边所对应的线路集合。每个线路集合内所带的负荷可由与之两端相连的线路进行供电,称之为待接入负荷。根据是否向与之相邻的待接入负荷供电,能够计算简化网络对应的各方案下每条馈线的负载率范围。假设某一待选线路集合所带的负荷均由与其一端相连的馈线进行供电,若此时该条馈线所带负荷量超出负载率约束,则说明其中距离最远的负荷不能由该馈线供电,可将最末端线路从待选线路集中筛除并将该负荷归入线路集另一端相连馈线所带负荷。更新各馈线负载率并重复上述过程,可从线路集两侧向内逐步筛除其中包含的待选线路。通过初步筛选后,配电网的规划方案数量较小,可通过枚举法确定简化网络规划方案所对应的实际配电网最优网架建设方案。
4 基于动态分时电价的运行调度策略
考虑运行环节中用户及配电网决策间的相互作用,首先建立用户的DR 模型,在此基础上提出配电网的动态分时电价优化方法。
4.1 用户DR模型
在经济学中,常以价格弹性系数表示在一定时期内,电价变化引起的用户负荷需求变化百分比,据此可得到分时电价下各时刻负荷的变换率[24]。
式中:EL(i,j)为时段 i 和时段 j 间负荷的价格弹性系数;ρ0和ρ 分别为实施分时电价前后的售电价格;PL和 PL'分别为实施分时电价前后的负荷量;λL(i)为实施分时电价后时段i 负荷需求变化率。
据此建立各时段间的弹性系数矩阵,结合原始负荷可得到响应后的负荷需求,具体如式(16)所示。
式中为原始负荷矩阵;λ 为价格弹性系数矩阵;Pload 为进行DR 后的负荷需求。
4.2 配电网分时电价制定策略求解
由于DG 的接入,配电网的净负荷时序曲线发生较大的改变。在固定的峰谷电价下,根据净负荷特性划分峰谷时段的动态分时电价能够更准确地反映网供负荷需求[25]。本文以各时段负荷与网供负荷峰值的百分比为划分依据,以5%为步长设置多组峰平谷时段划分阈值。具体表示如下。
式中:Cf,Cp和Cg分别为峰时段、平时段和谷时段的电 价 ;Pload,t 和 PDG,t 分 别 为 t 时 刻 配 电 系 统 的 总 负 荷有功需求和总 DG 有功出力;α 和 β 分别为峰、谷时段的划分阈值。
5 模型求解方法
5.1 网架规划层编/解码方式
对于源网规划问题,目前的研究多采用启发式算法求解。其中,粒子群算法收敛速度快、优化效率高,在电力系统规划中得到广泛应用[26]。在破圈操作过程中,各圈集包含的线路数量并不相同且可能发生变化,因此本文采用特殊的粒子群编/解码方法,将线路映射到[0,1]的连续空间,实现快速求解。
1)编码方式。粒子的编码分为两部分:第1 部分编码长度等于生成辐射网络所需开断的线路数,对应于开断线路或联络线路;第2 部分编码长度等于DG 的投建数量,对应于DG 投建地点。每位编码均为[0,1]之间的任意数。
2)解码方式。对于粒子第1 部分中的每一位编码 Xi,通过式(17)选择简化网络 Qi中的第 k 条边进行开断,若开断后网络将无法形成单联络结构,则将该线路从Qi中去除,并根据式(17)重新选择。
式中:s(Qi)为线路集合Qi中包含的线路数量。
对于粒子的第2 部分中的每一位编码,可通过式(18)确定网络的DG 投建地点g。
5.2 DG规划层编/解码方式
用户投建DG 将受电价、负荷特性、DR 等因素的影响,属于混合整数非线性问题,因此采用粒子群算法求解。其中每个粒子采用2×N 型矩阵编码。矩阵第1 行为0/1 编码,分别代表投建风机或光伏。第2 行采用整数编码代表投建DG 容量。为了考虑DG 出力的不确定性,采用蒙特卡洛法对各时段的风速和光照强度进行抽样,结合K 均值(K-means)算法对抽样得到的DG 出力场景进行聚类,得到多个典型场景[27]。
5.3 求解流程
结合配电网网架规划、DG 规划编/解码方式和运行调度求解方法,得到模型的整体求解流程如下。
步骤1:采用蒙特卡洛及K-means 算法得到DG的多个典型出力场景。
步骤2:初始化种群参数,生成N 个网架方案和DG 接入位置编码的种群X。
步骤3:根据每个方案下的DG 接入位置,生成M 个DG 投建方案编码的种群Y。
步骤4:根据每个DG 投建方案优化分时电价,根据电价计算负荷响应情况和用户DG 收益。
步骤5:计算粒子种群Y 的适应度,判断是否达到迭代终止条件,若是则执行步骤6,否则更新种群,返回步骤4。
步骤6:根据网供负荷情况确定网架规划方案,计算配电网收益。
步骤7:计算粒子种群X 的适应度,判断是否达到迭代终止条件,若是则输出最优个体并结束搜索,否则更新种群,返回步骤3。
6 算例分析
6.1 算例介绍
以某地区的实际配电网结构作为算例,配电网的结构及各点负荷类型如附录A 图A1 所示,线路、节点信息如附录A 表A1 所示。其中节点26 至28及节点36 至60 为新增节点,除电源节点外其余节点均可安装DG。 规划区域的总负荷峰值可达19.37 MVA,选用线路型号为LGJ120,线路容量为6.77 MVA,单位长度的线路阻抗设定为(0.025+j0.006)Ω/km。
风速及光照强度的全年变化曲线如附录A图A2 所示,主要参考华北某地区的典型数据拟定。区域整体负荷曲线如图A2(c)所示。风机的切入、切出和额定风速分别为4,20,15 m/s,单位容量建设成本为230 万元/MW,使用寿命15 年。光伏的最大有功出力为建设的额定容量,单位容量建设成本为320 万元/MW,使用寿命20 年。DG 上网电价为270 元/MW,主网购电成本为330 元/MW。用户侧峰平谷时段的电价分别为350,600,800 元/MW。
6.2 DG与DR接入对主动配电网规划的影响分析
为了验证本文提出的主动配电网源网协同规划方法的有效性,采用相同算法求解以下4 种规划方案:方案1 为不考虑DG 和DR 下的传统配电网扩展规划;方案2 为考虑用户投建DG 的规划方案;方案3 为考虑用户投建DG、引入固定分时电价DR 的规划方案;方案4 为基于本文提出的3 层优化方法求解得到的规划方案。算法的求解时间为15 392 s,约4 h。4 种规划方案下配电公司和用户的成本及效益如表1 所示。不同方案的网架结构及DG 建设情况如图2 所示。
表1 不同规划方案下配电公司和用户的等年值成本及收益
Table 1 Equivalent annual cost and benefit of distribution company and users in different planning schemes
图2 不同规划方案的网架结构和DG 接入位置
Fig.2 framework and DG location of different planning schemes
从表1 可以看出,引入 DG 和 DR 后,求解得到的网架规划方案的建设费用逐步降低。这是由于DG 承担了配电网的部分负荷需求,减少了规划区域的网供负荷。同时,从图3 可以看出,DR 的引入起到了削峰填谷的作用,进一步降低了尖峰负荷对配电网的冲击。因此,在DG 和DR 机制的作用下,配电网网架结构的可行解空间不断增大,减缓了配电网的扩建速度,有利于配电网的经济建设。此外,从方案1 到方案4,配电公司从主网的购电量逐步降低。虽然配电公司的售电收入有所减少,但由于建设、运行成本也有较大幅度的减少,方案4 与方案1相比,配电公司的整体效益仅减少了6.5%。
从用户的各项成本收益对比中可以看出,与方案 2 相比,引入 DR 后,方案 3 和方案 4 中用户投建DG 的收益分别增加了10.2 万元和12.8 万元,用户投资意愿较高。通过对用户收益构成进行分析可以发现,引入DR 后,用户因自发自用节省下的电费效益由总收益的71.0% 上升为73.56% 和75.96%。这说明,在引入DR 后,特别是动态分时电价下,DG出力的就地消纳情况较好。
图3 考虑DR 的配电网典型运行场景
Fig.3 Typical operation scenarios of distribution network considering DR
6.3 网源协同规划与网源次序规划对比结果分析
为了说明网源协同规划的必要性,本节不考虑DR 机制的影响,采用网源协调规划及网源次序规划方法对网架结构和DG 配置方案进行求解。其中,网源协调规划结果见6.2 节方案2。网源次序规划的网架方案与方案1 相同,配电公司从主网及用户处购电成本分别为2 334 万元和115.4 万元,售电收入为4 696.3 万元,总收益达2 051.7 万元。用户在节点2 和18 分别投建风机0.67 MW 和0.75 MW,在节点 3,5,24,40,44,53 分别投建光伏 0.52,0.49,0.49,0.48,0.49 MW,总投资成本为 178.3 万元,自发自用收益为273.2 万元,总收益为210.3 万元。
根据方案2 与方案5 的对比结果可以看出,方案5 中配电公司的建设投资成本较高。这是由于在该方法下,配电公司在进行网架规划时,并未考虑因用户投建DG 而减少的部分负荷需求,据此得到电网的扩建规模未因DG 接入而降低。同时,由于DG接入使得用户的部分负荷能够自给自足,配电网的售电收入随之降低,导致配电企业的运行效益较低。此外,对于不同的网架规划方案,DG 建设方案也不同,这说明网、源规划方案间存在相互影响,在任一对象的优化中均需考虑另一对象的规划结果,进行协调规划。
6.4 单联络网络优化方法的有效性分析
为对网架规划方案进行高效寻优,本文提出了基于破圈法和粒子群优化的求解算法。为验证该方法的有效性,图4 给出了基于本文所提方法、省略简化过程直接对复杂配电网进行寻优,以及传统遗传算法的收敛结果。在算法寻优过程中,设置不满足拓扑约束的规划方案目标函数为0,同时对符合负载率约束的规划方案叠加惩罚项M=-1000 万元来淘汰不可行解。因此,对于不满足负载率约束的规划方案,其目标函数值将局限在1 000~1 500 万元范围内。
图4 算法收敛结果
Fig.4 Convergence result of the algorithm
通过图4 可以看出,传统遗传算法在寻优过程中产生大量不符合拓扑约束的规划方案,更难以得到符合负载率约束的可行解。本文提出的单联络网架生成方法能够确保生成的规划方案均满足单联络接线模式,无须进行拓扑检验。但若直接对复杂配电网进行寻优,仍将出现大量不符合负载率约束的不可行解,直至第20 代才出现可行解,收敛速度较慢。通过对算法寻优过程中搜索得到的可行解数量进行统计发现,直接对复杂配电网进行寻优得到的可行解数量为312,而先对网络进行简化在搜索过程中规避了部分不可行解,得到的可行解数量增加至729,有利于进一步提高算法的寻优成功率。
7 结语
本文基于用户和配电公司在规划、运行环节各项决策间的相互作用,提出了分别以DG 和配电网综合效益最优为目标,并内嵌DR 与运行策略的主动配电网规划框架、模型及方法。同时,针对单联络接线模式的网架规划,提出了基于破圈法的网架生成方法及相应的粒子群算法编/解码方法。通过实际算例,可得出以下结论。
1)DG 的引入使得部分负荷就地平衡,减少了配电公司的市场份额。同时,DR 机制的引入使部分负荷由高峰时段转移到非高峰时段,略微降低了配电公司的售电收益,但DG 和DR 机制的引入均能减少系统网供负荷,降低配电网的投资规模,有利于配电网的经济建设。此外,用户将从DG 投资中获利,DR 机制能够促进DG 的就地消纳,提高用户的投资收益,促进用户投资意愿。其中,基于网供负荷时序特性的动态分时电价对于促进用户投建DG 的效果更为明显。
2)与网源次序规划方法相比,网源协调规划方法在网架规划中能够考虑DG 投建带来的影响,降低配电网扩建规模,进而提高配电公司的整体效益。
3)本文提出的基于破圈法和粒子群算法的网架优化方法,在寻优过程中能够完全规避拓扑不可行解,减少不符合负载率约束的不可行解,提高了算法的寻优成功率。
本文主要考虑了用户和配电公司在规划、运行各环节决策对配电网规划产生的影响,对多主体参与下的配电网规划提供一定的指导。后续将进一步研究在其他利益主体参与下的配电网规划问题。